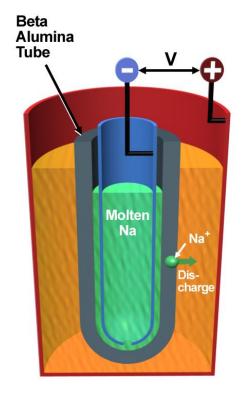
# Low-Cost Planar Na-Metal Halide Batteries

2014 DOE EES Program Peer Review & Update Meeting Sept 16~19, 2014 Washington DC

Jin Y. Kim, Guosheng Li, Xiaochuan Lu, John Lemmon, Vincent Sprenkle, Brent Kirby, Nathan Canfield, Kerry Meinhardt, Jeff Bonnett

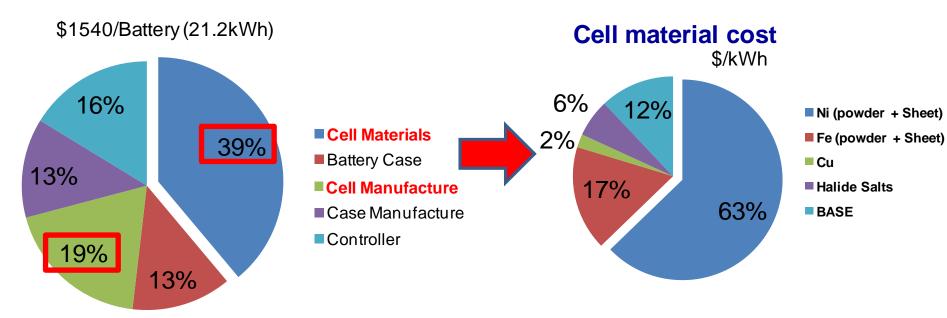
Pacific Northwest National Laboratory
Richland, WA 99352


Sponsored by DOE Office of Electricity Energy Storage Program – Program Manager: Dr. Imre Gyuk

# Sodium β"-Alumina Batteries (NBBs)

- ► Batteries consisting of molten sodium anode and β"-Al<sub>2</sub>O<sub>3</sub> solid electrolyte (BASE).
  - Use of low-cost, abundant sodium → low cost
  - High specific energy density (120~240 Wh/kg)
  - Good specific power (150-230 W/kg)
  - Good candidate as a large-scale energy storage Device for renewable energy
  - Operated at relatively high temperature (300~350°C)
- Sodium-sulfur (Na-S) = battery
  - 2Na + xS  $\rightarrow$  Na<sub>2</sub>S<sub>x</sub> (x = 3~5)
    - E = 2.08~1.78 V at 350°C
- Sodium-nickel chloride (Zebra) battery
  - $2Na + NiCl_2 \rightarrow 2NaCl + Ni$ 
    - $E = 2.58V \text{ at } 300^{\circ}C$
    - Use of catholyte (NaAlCl<sub>4</sub>)

#### Merits


- Safe cell failure mode
- Easiness of assembly in discharged state
- Less corrosive nature of cathode materials





# **ZEBRA** battery cost projection\*

#### **ZEBRA** battery cost



<sup>\*</sup> R.C. Galloway, C.-H. Dustmann, "ZEBRA Battery - Material Cost, Availability and Recycling", MES-DEA GmbH, EVS 20, 2003.

#### Obstacle for commercialization

 Relatively expensive → Cost reduction is a key issue to commercialize this technology for large energy storage applications.



## **Approaches to Reduce Cost**

- Intermediate Temperature (≤200°C) Na-NiCl<sub>2</sub> Battery
  - Use of economical construction materials and manufacturing processes such as polymer seals, enabling high throughput manufacturing methods
    - Not using high-cost processes such as glass sealing or TCB
    - Low capital cost and manufacturing cost
  - Low maintenance cost
  - Better cycle life by suppressing degradation mechanisms
- Battery with Low-Cost Active Materials
  - Replacement of nickel with low-cost zinc or iron

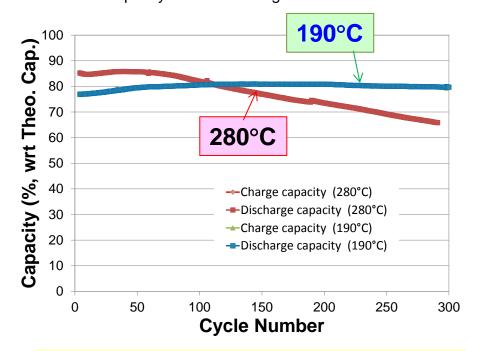
## **Previous Results**

- ► Improved stability of Na-NiCl<sub>2</sub> Battery at reduced temperature less than 200°C
- Development of low-melting point catholyte based NaCl-NaBr-AlCl<sub>3</sub>
- Overcoming the wetting problem of Na melt at intermediate temperature using metalized layer
- Development of Zn-based battery with NaAlCl₄ catholyte



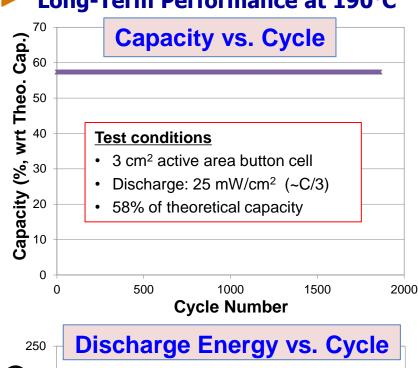
# **2014 Goals and Accomplishments**

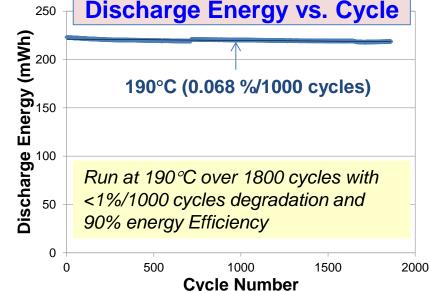
- ➤ Intermediate Temperature Operation of Na-NiCl<sub>2</sub> Cell
  - Long-Term Test: Ran at 190°C over 1800 cycles with <1%/1000 cycles degradation and 90% energy Efficiency</li>
  - Developed polymer seals
- Multi-cell Module
  - 2-cell module (32 cm<sup>2</sup> active per cell)
  - Compressive polymer seals with a load frame
  - Achieved properties/(Target) @ 50 mW/cm² Discharge:
    - Energy Efficiency: 94% /(>90%)
    - Degradation: 0.46%/100 cycles /(<1%/100 cycles)</li>
- Fe-Based Battery:
  - >40% reduction in materials cost expected compared to Ni.
  - Developed low-temperature cell activation technology using sodium polysulfide
- BASE Fabrication at lower temperature (1400°C)
  - Simultaneous sintering and conversion
  - Densification of β" alumina assisted by transition-metal doped YSZ




# Performance of IT Na-NiCl<sub>2</sub> Cell

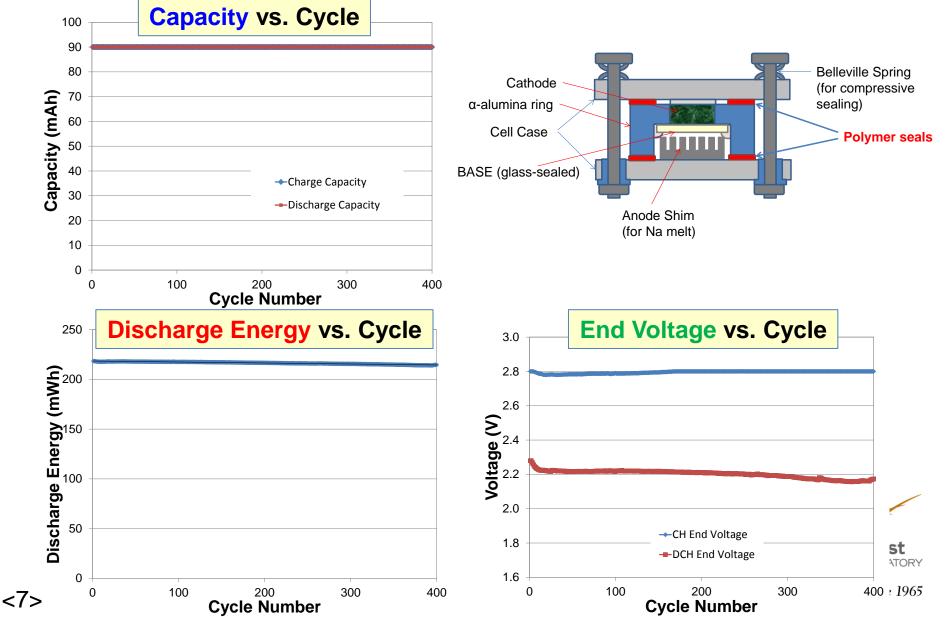
190°C vs. 280°C (cycled between 2.0~2.8V)


#### **Test conditions**

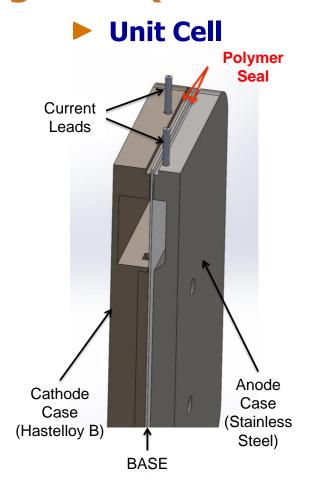

- 3 cm<sup>2</sup> active area button cell
- Current: 10 mA/cm<sup>2</sup> (~C/3)
- Cycled over 80% of theoretical capacity to enhance degradation



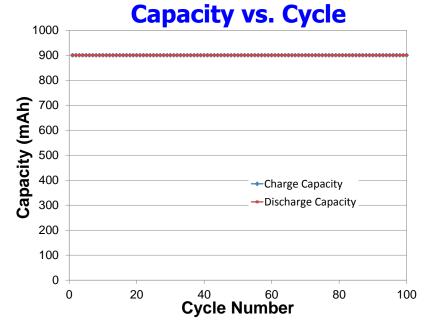
More stable cycling behavior was observed @ 190℃.


#### ► Long-Term Performance at 190°C

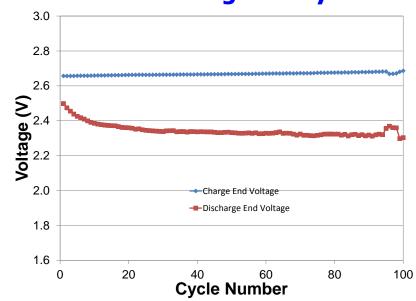





# Polymer Seals (3 cm<sup>2</sup> Active Area)


Polymer Seals (Cathode/Anode): 25 mW/cm² (~C/3) DCH @ 190°C

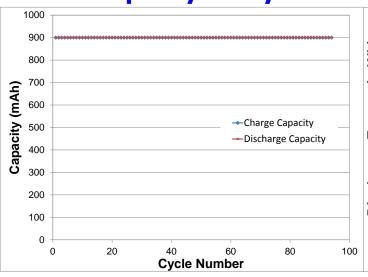


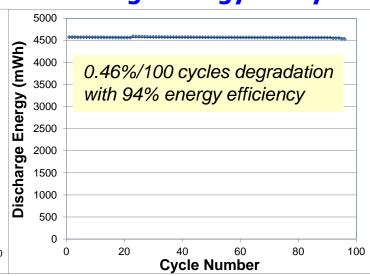

Large Cell (32 cm<sup>2</sup> Active Area) w/ Polymer Seal



- Polymer seal with a load frame for both cathode and anode seals
- Cycled in a glove box, cooled down and moved outside
- C/4.5 Charge and 25 mW/cm<sup>2</sup> Discharge (~C/3) in air

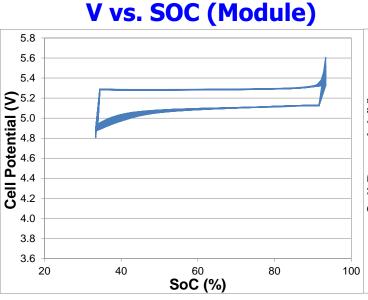


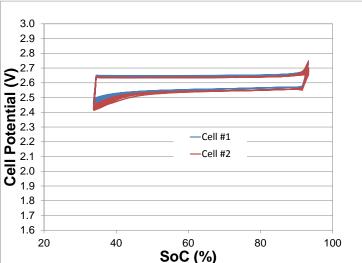

### **End Voltage vs. Cycle**




# 2-Cell Module (32 cm<sup>2</sup> Active Area) w/ Polymer Seal




## **Discharge Energy vs. Cycle**

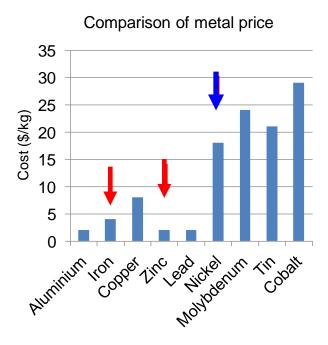





- 2 Cells connected in series with a load frame
- C/4.5 Charge and 50 mW/cm<sup>2</sup> Discharge (~C/3)

## V vs. SoC (Each Cell)





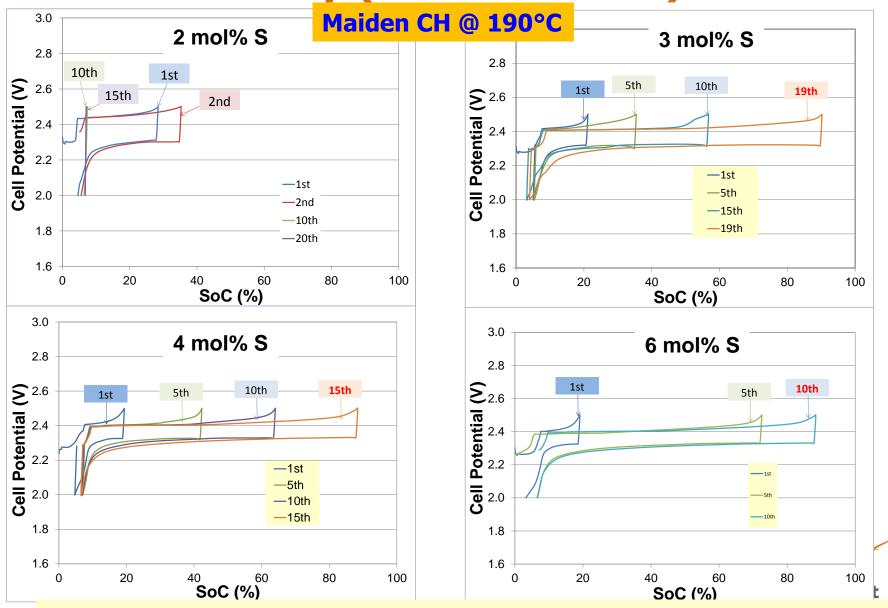



## Na-Metal Halide Batteries: Ni vs. Zn or Fe

#### World production and reserves

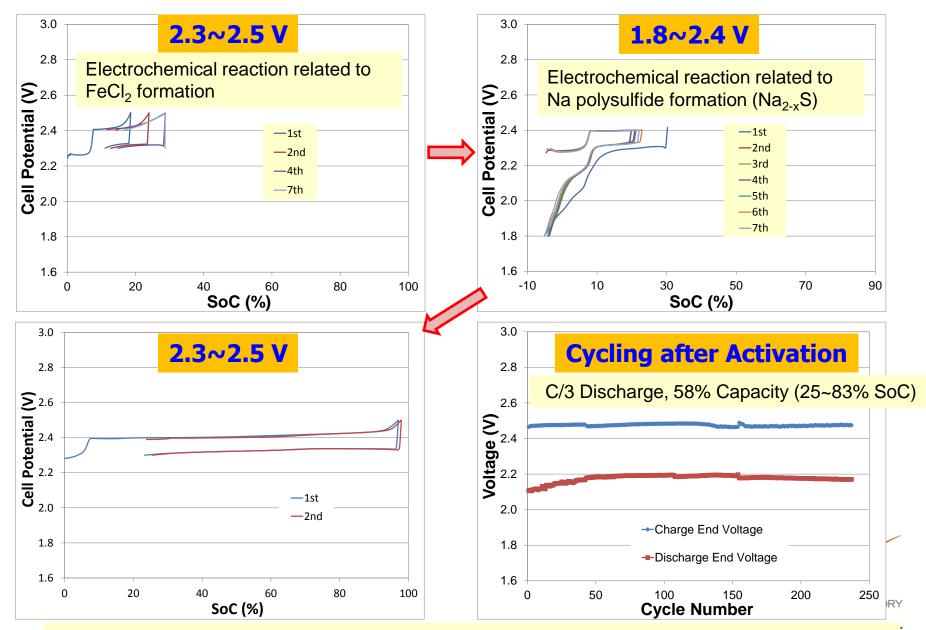
|                                           | 2005 World<br>Production | World<br>Reserves <sup>a</sup> |  |
|-------------------------------------------|--------------------------|--------------------------------|--|
| Aluminum                                  | 31,900,000               | Large                          |  |
| Iron                                      | 1.38E+09                 | 7.2E+10                        |  |
| Copper                                    | 15,000,000               | 430,000,000                    |  |
| Zinc                                      | 10,000,000               | 200,000,000                    |  |
| Lead                                      | 3,300,000                | 61,000,000                     |  |
| Nickel                                    | 1,400,000                | 56,000,000                     |  |
| Molybdenum                                | 180,000                  | 7,800,000                      |  |
| Tin<br>Unit: MT                           | 300,000                  | 5,500,000                      |  |
| <sup>a</sup> Based on the prove reserves. | en and probable po       | rtion of the world             |  |




## ▶ New Na-ZnCl₂ Battery

- Cathode consists of active materials (NaCl + Zn), NaAlCl<sub>4</sub> catholyte, and electrically conducting materials (metals, carbon, etc) in the form of powder, foam, mesh, etc.
- Assembled in discharged state (no addition of sodium in anode)
- Stable performance above the eutectic temperature (253°C) due to the liquid phase formation
- However, the relatively high operating temperature limits the use of polymer seals.

#### IT Fe-Based Na Battery (≤200°C)


Technical Challenge: Na-FeCl₂ battery is not activated due to the surface oxide layer on Fe particles when being assembled in a discharged state → Additives to remove the passivation layer of Fe particles

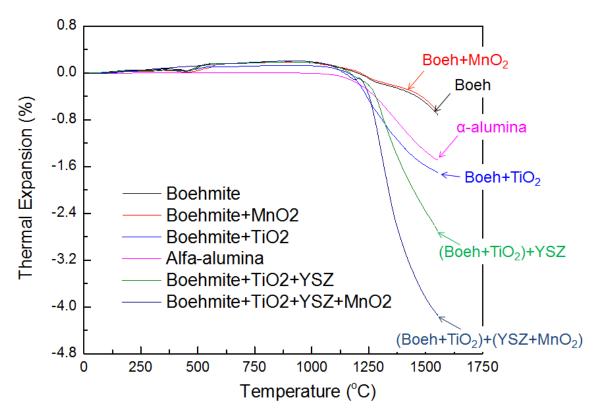
# Fe-Based Battery (Sulfur Content)



The amount of additives plays a critical role in initial activation and subsequent cell performance.

# Fe-Based Battery (6 mol% sulfur)



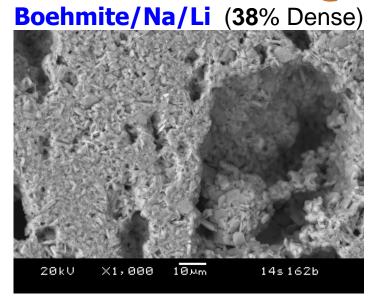

The formation of Na polysulfide is in charge of Fe cell activation.

# **BASE Fabrication @ Lower Temperature**

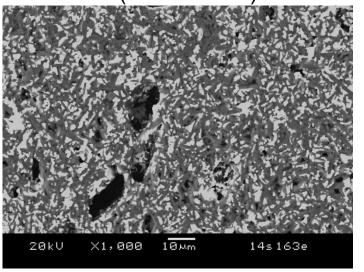
- Difficulty to sinter β" alumina
  - High temperature required (1600°C)
  - Loss of β" stabilizing elements (Na, Li, etc) at high temperatures
- Conversion Process (Virkar, et al. US Patent#: 6,117,807)
  - Two-step process
    - Sintering: α-alumina/YSZ (~1600°C)
    - Conversion of α-alumina to β"-alumina in β"-alumina beds (~1400°C)
  - YSZ: (i) Oxygen transport path during conversion, (ii) Strengthen the BASEs
  - Merits
    - Easy control of β" stabilizing elements
    - Strong composite structure
  - Drawbacks
    - Two-step process (Batch Process)
    - Waste β"-alumina powder used in conversion

# **Simultaneous Sintering/Conversion**

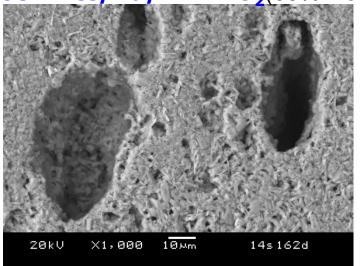
- Transition-metal doped YSZ assisted densification of β" alumina
  - Transition metal (TM) doped YSZ enhances the densification of β" alumina at relatively lower temperature (~1400°C), minimizing the loss of β" stabilizing elements (Na, Li, etc)
  - Cosintering of Boehmite with Na, Li, and Ti salts and TM-doped YSZ






**Pacific Northwest** 


# Densification @ 1400°C



(Boehmite/Na/Li +TiO<sub>2</sub>) + YSZ (83% Dense)



Boehmite/Na/Li +TiO<sub>2</sub>(60% Dense)



(Boehmite/Na/Li +TiO<sub>2</sub>)+(YSZ+MnO<sub>2</sub>)

& Conversion

(98% Dense)

20kU

X1,000

| R | esi | isti | V | ty |
|---|-----|------|---|----|
|   |     |      |   |    |

Sintering Temp 300°C 250°C 200°C 150°C **Simultaneous** 18.43 23.40 42.12 78.54 **Process Two-Step Sintering** 

41


72

120

## **Future Work**

#### IT multi-cell module

- New mass-producible design
- Long-term test and improvement in long-term stability
- Fe-based cell



Polymer Seal (Filled or unfilled Polyethylene)

#### Fe-based cell

- Study of activation mechanisms and performance optimization
- Long-term tests

## Simultaneous sintering/conversion

Cell tests



Cathode

# **Acknowledgements**

 US DOE Office of Electricity – Dr. Imre Gyuk, Energy Storage Program Manager



# **Publications/Patents**

- > 15 invention reports
- 5 US patent applications
- 10 journal papers (including one in Nature Com.)
- 1) X. Lu, G. Li, J.Y. Kim, J.P. Lemmon, V.L. Sprenkle, Z. Yang, "The Effects of Temperature on the Electrochemical Performance of Sodium-Nickel Chloride Batteries", J. Power Sources 215 (2012) 288
- 2) G. Li, X. Lu, C.A Coyle, J.Y. Kim, J.P. Lemmon, V.L. Sprenkle, Z. Yang, "Novel ternary molten salt electrolytes for intermediate-temperature sodium/nickel chloride batteries," J. Power Sources 220 (2012) 193
- 3) X. Lu, J.P. Lemmon, J.Y. Kim, V.L. Sprenkle, Z.G. Yang, "High Energy Density Na-S/NiCl2 Hybrid Battery," Journal of Power Sources 224 (2013) 312
- 4) D. Reed, G. Coffey, E. Mast, N. Canfield, J. Mansurov, X. Lu, Vince Sprenkle, "Wetting of sodium on β"-Al2O3/YSZ composites for low temperature planar sodium-metal halide batteries," Journal of Power Sources 227 (2013) 94
- 5) X. Lu, B.W. Kirby, W. Xu, G. Li, J.Y. Kim, J.P. Lemmon, V.L. Sprenkle, Z.G. Yang, "Advanced Intermediate-Temperature Na-S Battery," Energy & Environmental Science 6 (2013) 299
- 6) X. Lu, G. Li, J.Y. Kim, J.P. Lemmon, V.L. Sprenkle, Z. Yang, "A Novel Low-Cost Sodium-Zinc Chloride Battery," Energy & Environmental Science 6 (2013) 1837
- 7) G. Li, X. Lu, J.Y. Kim, J.P. Lemmon, V.L. Sprenkle, "Cell Degradation of Na-NiCl2 (Zebra) Battery," J. Mater. Chem. (2013) 14935
- 8) G. Li, X. Lu, J.Y. Kim\*, J.P. Lemmon, and V.L. Sprenkle, "Improvement in cycling behavior of ZEBRA battery operated at intermediate temperature of 175 □ C," Journal of Power Sources, 249 (2014) 414
- 9) G. Li, X. Lu, J.Y. Kim, D. Mei, J.P. Lemmon, V.L. Sprenkle, J. Liu, "Liquid Metal Electrode to Enable Ultra-Low Temperature Sodium-Beta Alumina Batteries for Renewable Energy Storage," Nature Communications (2014) vol. 5, 5, Article number: 4578.
- 10) G. Li, X. Lu, J.Y. Kim, M.H. Engelhard, J.P. Lemmon, and V.L. Sprenkle, "The Role of FeS on Initial Activation and Performance Degradation of Na-NiCl2 (ZEBRA) Battery," Journal of Power Sources, in press